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dichroanal B ),! taiwaniaquinol B 8),? standishinal 4),> among
others (Figure 1}:245The biological activities of these compounds  (+)-Dichreanene (1} 5 6
are under investigation, and standishinal, which has been shown mwke,mm,u
to inhibit aromatasé,could be used to develop agents targeting
estrogen-dependent carcinomasithough the racemic total syn- ° !
theses of dichroanoné)({” dichroanal B 2),”2 and taiwaniaquinol % — Q:)JLO,\# R — W
B (3)° have recently been completed, there have been no enantio- \ . Enantioselective

selective syntheses of any member of this family. Our interest in
dichroanone 1) was piqued upon inspection of its interesting scheme 2

(—)-Dichroanone 1) is a 4a-methyltetrahydrofluorene norditer-  Scheme 1
penoid isolated from the flowering plaBabia dichroanthaSTAPF,
found in Turkey! It belongs to a recently discovered yet growing
class of natural products that bear a [6-5-6] tricyclic core, including

Tsuji Allylation 7

structure, which includes a fully substituted quinone, the charac- Pd,(dba)s (2.5 mol%)

istic [6-5-6] tricycli ic all- LiHMDS (1.2 equi (S} +Bu-PHOX
teristic [6-5-6] trlcyt_:llc core, and a ben_zyllc all ca_rbon qu_aternary i THF(,0°(e:quw) o AR i |
stereocgnter. ngeln we report a concise, catalytic enaptloselectlve! Them aily! shioroformats” o)j\o P rrrrryre— .
synthesis of?{—)-dlchroanon_e that does not employ p_rotect!ng groups (13 equiv), 78°C (83% yield,
and unambiguously confirms the absolute configuration of the (86% yield) 8 91% ee)
molecule.

PdCl, (5 mol%) B B

0 Cu(OAc)H20 powdered KOH H
o, OH HO  OMe L‘W» i (0.45 equiv) o
0, (1 atm) (o) xylenes, 110 °C
DMA / H,0 (7:1), 23 °C Dean-Stark, 11 h

Ho OH
] ‘Q 0 OH
H

Parr-shaker, 24 h 10 (96% yield) 6
T~ OH 77% yield (91% ee)
H B H Bn (77 yild) e[ (97% ee)
(-)-Dichroanone (1)  (-)-Dichroanal B (2) (-)-Taiwaniaquinol B(3) (-)-Standishinal (4)
Figure 1. Dichroanone and related natural produds4). %) in THF to produce quaternary allyl ketoien 83% vield and

4 o o .
Our laboratory recently developed a powerful method for the 919% ee:* Wacker oxidatiof of keto-olefin7 was performed in a

enantioselective construction of quaternary centers by palladium- Rarr ?Gpparatus to gfford com_plete conversion to d'l_(ema 77%_
catalyzed allylatiort® and we believed that this protocol could be Yi€!d-*® Condensation of0using KOH in xylenes with azeotropic

. . i i i i i 7,18
employed to stereoselectively install the quaternary center of Water removal provided bicyclic enorgein excellent yield:
dichroanone 1). Specifically, our allylation method delivers cy- Elaboration of enoné to more advanced intermediates was

clohexanones with stereogenicityto the ketone. Prior to our work challenging because of the propensity for most carbon electrophiles
in this area, many of these simple cyclohexanone building blocks {0 react at oxygen preferentially to C(5a) (Scheme 3). Fortunately,
bearing all-carboro-quaternary stereocenters centers were not Michael addition of the lithium enolate @ftq methyl vinyl ketone
readily available in an enantioselective fashion or had never been(MVK) at low temperature formed the desired-C bond of keto-
reported as single enantiomer substad®&dn addition to employ- enonellin good yield with high diastereoselectivity Given the

ing our catalytic asymmetric allylation reaction, we planned to SUCCeSS of this method, we pursued a Robinson annulation strategy
install the three oxygen atoms of dichroanone at a late synthetic to form the final ring of dichroanone. Aldol condensation furnished
stage, eliminating the need to protect any phenols or quinones duringtricyclic enonel2in 80% yield, albeit with partial epimerization

the synthesis (Scheme 1). Thus, dichroandde¢uld arise from of the C(5a) stereocenter. This stereochemical loss was of little
arene5, which could be prepared via benzannulation of bicyclic consequence, as C(5a) is ultimately part of the quinone rirg of

enone 6. Enone 6 could be prepared from allyl ketoné by Because attempts to oxidatively aromatize this newly formed ring
sequential Wacker oxidation and aldol condensatférEither to a phenol were hampered by poor yields, we took the opportunity
enantiomer of7 is readily available from enol-carbonag by to install the isopropyl group of the natural product, albeit as an
application of our enantioselective Tsuji allylati$hEinally, 8 is isopropenyl moiety, with the hope that the higher oxidation level
available from commercial 2,2,6-trimethylcyclohexanofie ( could be transposed into the ring. Hence, the kinetic enolate of

We began our synthesis of-J-dichroanone ) by enolization tricyclic enonel2 was trapped wittN-phenyltriflimide to give enol-
of 9 and trapping with allyl chloroformate, affording the enol triflate 13, which was immediately subjected to Kumada coupling

carbonated in high yield with minimalC-acylation (Scheme 2§13 conditions with isopropenylmagnesium bromide. Interestingly, this
In the critical asymmetric Tsuiji allylation, carbon&evas treated coupling led to a mixture of isomeric products, which converted
with catalytic Pd(dba) (2.5 mol %) and $-t-Bu-PHOX (6.25 mol irreversibly to compound upon exposure to acid. Gratifyingly,
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Scheme 3 Scheme 4
0 o
H LiHMDS, THF dered KOH
; o 0°C >23°C "°“(’ziifuiv) 152X 101 O o1
—_— —_— > > >
then MVK, -78 °C xylenes, 110 °C s X H
then aq NH,CI Dean-Stark, 14 h FsCs FsCo
6 -78°C—>23°C (80% yield) 17 18
o, 72% yield . . .
(97% ee) (72% yield) A (+)-Dichroanone 1) was prepared in 4.0% overall yield over
>_Mgar 11 steps without the use of protecting groups. The synthesis is
(2 equiv) highlighted by the first use of our enantioselective Tsuiji allylation
0 _71'3-931370“;" orr Pd}ﬁi";’g 5%";0"1%) in the context of a natural product, a novel Kumada aromatization
—_— — of an enone, and a new method for generating a hydmxy-
then PhN(Tf), then 6 M aq HCI . f h | . . | . ff
12 78°C—23°C, 5h s 23°C benzoquinone from a phenol in a single reaction sequence. Efforts
(561 dr) (4.8:1 dr) (65% yield, 2 steps) directed toward the synthesis of other members of this interesting
family of natural products are underway.
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IBX (1.2 equiv), CHCl,, 23 °C, 19-43 h
then CgFsSH (4 equiv), 23°C,2h

then O, (1 atm), NaOH (10 equiv), MeOH
23°C—75°C,5h
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